
Comment configurer un DNS local avec Dnsmasq sur Debian 12
Dnsmasq	is	a	small	and	lightweight	network	service	for	your	local	environment	(LAN).	It	provides	network	services	
such	as	DNS,	DHCP,	and	TFTP.	Dnsmasq	can	be	used	as	a	DNS	forwarder,	recursive	DNS	Server,	and	DNS	caching	
system.	It	also	loads	DNS	contents	from	the	/etc/hosts	file,	which	allows	you	to	set	up	domain	names	for	local	
hostnames.

Dnsmasq	is	designed	to	be	lightweight	with	a	small	memory	footprint,	suitable	for	low-resource	devices	such	as	Routers	
and	Firewalls.	Dnsmasq	can	be	run	on	Linux,	BSDs,	Android,	and	macOS.

This	tutorial	will	install	and	configure	a	local	DNS	Server	with	Dnsmasq	on	a	Debian	12	server.	We	will	set	up	a	local	
DNS	Server	that	can	be	used	for	your	local	network,	adding	local	domain	names,	enabling	DNS	cache,	and	enabling	
DHCP	Server	via	Dnsmasq.	You'll	also	learn	how	to	set	up	and	add	a	client	machine	to	use	the	local	DNS	Server.	Once	
you've	completed	this	tutorial,	you'll	be	able	to	access	all	of	your	applications	via	the	local	domain	name,	and	your	DNS	
requests	will	be	faster	because	you've	enabled	cache	DNS.

Prerequistes
Before	you	begin,	you	must	have	the	following	requirements	to	complete	this	tutorial:

A	Debian	12	server	-	This	example	uses	a	Debian	server	with	the	hostname	'dnsmasq-server'	and	the	IP	address
192.168.5.20.
A	non-root	user	with	sudo/root	administrator	privileges.

For	the	client	machine,	you	can	use	any	Linux	distribution	because	the	DNS	configuration	is	similar	for	every
distribution.

Preparing	the	System
In	this	step,	you'll	prepare	your	Debian	server	that	will	be	used	as	the	local	DNS	Server.	You'll	update	the	package
index,	stop	and	disable	the	'systemd-resolved'	service,	then	you'll	create	a	define	the	static	DNS	resolver	configuration
via	the	'/etc/resolv.conf'	file.

On	the	Debian	system,	the	DNS	resolver	is	managed	by	the	'systemd-resolved'	service,	which	provides	network	name
resolution	via	the	D-BUS	interface.	To	set	up	the	DNS	Server	software	such	as	Dnsmasq,	you	must	disable	the	'systemd-
resolved'	service.

Before	you	get	started,	run	the	below	apt	command	to	update	and	refresh	your	Debian	package	index.

sudo	apt	update

Next,	run	the	below	command	to	stop	and	disable	the	'systemd-resolved'	service.	On	the	Debian	system,	the	DNS
configuration	is	managed	by	the	NetworkManager	and	systemd-resolved	service.

sudo	systemctl	disable	--now	systemd-resolved
sudo	systemctl	stop	systemd-resolved

Remove	the	link	file	of	DNS	resolver	configuration	'/etc/resolv.conf'	via	the	following	command.

sudo	unlink	/etc/resolv.conf

After	that,	create	a	new	DNS	resolver	config	file	'/etc/resolv.conf'	using	the	below	nano	editor	command.

sudo	nano	/etc/resolv.conf

Add	the	following	lines	to	the	file.	This	will	add	the	Cloudflare	and	Google	public	DNS	as	the	resolver	for	your	Debian
server.

nameserver	1.1.1.1
nameserver	8.8.8.8

Save	the	file	and	exit	the	editor	when	you're	finished.	Now	move	to	the	next	steps	for	the	Dnsmasq	installation	and
configuration.

Installing	and	Configuring	Dnsmasq
In	this	step,	you'll	install	and	set	up	the	local	DNS	Server	using	the	Dnsmasq.	You'll	set	up	the	Dnsmasq	to	run	on	the
default	DNS	port	53	and	the	internal	IP	address	'192.168.5.20'.	You'll	also	define	the	domain	name	for	the	Dnsmasq
service,	enable	the	DNS	cache,	and	lastly	enable	the	DHCP	server	via	the	Dnsmasq.

The	default	'dnsmasq'	package	is	available	on	the	Debian	repository.	Run	the	below	apt	command	to	install	the
Dnsmasq	package.

sudo	apt	install	dnsmasq

When	prompted,	input	y	to	confirm	and	press	ENTER	to	proceed.

After	the	Dnsmasq	is	installed,	run	the	below	systemctl	command	utility	to	verify	the	'dnsmasq'	service	and	ensure	that
the	service	is	enabled	and	running.

sudo	systemctl	is-enabled	dnsmasq
sudo	systemctl	status	dnsmasq

You'll	receive	the	output	similar	to	this	-	The	dnsmasq	service	is	enabled	and	will	be	run	automatically	upon	the	bootup.
And	the	current	status	of	the	dnsmasq	service	is	running.

With	the	Dnsmasq	is	running	on	your	Debian	system,	you'll	next	start	the	Dnsmasq	configuration	via	the	file
'/etc/dnsmasq.conf'.

To	start,	run	the	below	command	to	back	up	the	default	Dnsmasq	config	file.

sudo	cp	/etc/dnsmasq.conf{,.orig}

Now	open	the	Dnsmasq	configuration	file	'/etc/dnsmasq.conf'	using	the	below	nano	editor	command.

sudo	nano	/etc/dnsmasq.conf

Add	the	following	lines	to	the	file.

#	dnsmasq	run	on	UDP	port	53
#	with	IP	address	localhost	and	192.168.5.20
#	and	network	interface	eth1
port=53
listen-address=127.0.0.1,192.168.5.20
interface=eth1

#	disable	forwarding	of	non-routed	address
#	disable	forwarding	names	without	the	main	domain.com
#	automatically	append	the	domain	part	to	simple	names
#	disable	dnsmasq	to	read	/etc/resolv.conf	file
domain-needed
bogus-priv
expand-hosts
no-resolv

#	upstream	DNS	server	for	non-local	domain	names
#	using	Cloudflare	and	google	public	DNS
server=1.1.1.1
server=8.8.8.8

#	define	the	domain	for	dnsmasq
domain=hwdomain.io
address=/hwdomain.io/192.168.5.20

#	enable	DNS	Cache	and	adjust	cache-size
cache-size=1000

#	enable	DHCP	via	dnsmasq
#	define	lease	db	file
#	make	the	dhcp	server	as	an	authoritative
dhcp-range=192.168.5.80,192.168.5.150,12h
dhcp-leasefile=/var/lib/misc/dnsmasq.leases
dhcp-authoritative

Save	the	file	and	close	the	editor	when	you're	finished.

Detail	options	that	you'll	be	using	for	Dnsmasq:

port:	which	port	you	will	be	using	to	run	the	Dnsmasq.
listen-address:	which	IP	address	you'll	be	using	to	run	the	Dnsmasq.	You	can	use	multiple	IP	addresses.
interface:	which	interface	the	Dnsmasq	will	be	bind	and	running.
domain-needed:	disable	forwarding	names	without	the	main	domain	address.	You	can	access	like	'mysql1'	host
unless	you	give	the	full	with	local	domain	such	as	'mysql1.hwdomain.io'.
bogus-priv:	disable	forwarding	for	non-routed	addresses.
expand-hosts:	automatically	append	the	local	domain	part	to	simple	names.
no-resolv:	ignore	the	'/etc/resolv.conf'	file	on	the	server.
server:	define	the	upstream	DNS	Server	that	you'll	be	using	for	non-local	addresses	or	domains.	This	example	uses
the	Public	DNS	Server	by	Cloudflare	and	Google.
domain:	define	the	domain	name	for	the	Dnsmasq	server.	In	this	example,	the	Dnsmasq	server	will	get	the	local
domain	hwdomain.io.
address:	define	which	IP	address	for	the	domain	name	on	Dnsmasq.	In	this	example,	the	domain	hwdomain.io	will
be	resolved	to	the	IP	address	192.168.5.20.
cache-size:	enabled	DNS	cache	on	Dnsmasq.	Be	sure	to	adjust	the	size,	which	increases	the	performance	and
speed.
dhcp-range:	enable	the	DHCP	server	via	the	Dnsmasq.	Adjust	the	IP	address	pool	for	your	network	and	lease
time.
dhcp-leasefile:	define	the	file	that	will	be	sued	to	store	the	DHCP	lease.
dhcp-authoritative:	make	the	DHCP	server	as	authoritative.

Next,	open	the	config	file	'/etc/hosts'	using	the	below	nano	editor	command.	You	can	define	the	subdomain	for	your
internal	applications	and	will	automatically	be	configured	with	the	Dnsmasq	domain	name	'hwdomain.io'.

sudo	nano	/etc/hosts

Add	the	following	lines	to	the	file.	In	this	example,	you'll	define	the	sub-domain	app1,	db1,	and	files.	The	root	domain
for	these	sub-domains	is	the	Dnsmasq	server	itself	'hwdomain.io'.

With	the	following	lines,	the	'app1.hwdomain.io'	will	be	resolved	to	the	IP	address	'192.168.5.10',	the	sub-domain
'db1.hwdomain.io'	will	be	pointed	to	the	server	IP	address	'192.168.5.25',	and	the	sub-domain	'files.hwdomain.io'
will	be	pointed	to	the	IP	address	'192.168.5.50'.

192.168.5.10	app1
192.168.5.25	db1
192.168.5.50	files	

Save	the	file	and	exit	the	editor	when	you're	finished.

Next,	open	the	'/etc/resolv.conf'	file	with	the	following	nano	editor	command	and	add	the	Dnsmasq	server	IP	address	as
the	'nameserver'.

sudo	nano	/etc/resolv.conf

Add	the	following	lines	to	the	top	of	the	file.	Be	sure	to	change	the	IP	address	with	the	Dnsmasq	server	IP	address.

nameserver	127.0.0.1
nameserver	192.168.5.20

Save	the	file	and	exit	the	editor	when	you're	done.

Now	run	the	'dnsmasq'	command	below	to	verify	the	Dnsmasq	configuration	and	ensure	that	you've	got	the	proper
format	configuration.	You	should	receive	the	output	such	as	'dnsmasq	-	syntax	check	OK'.

sudo	dnsmasq	--test

Lastly,	run	the	below	systemctl	command	utility	to	restart	the	'dnsmasq'	service	and	apply	the	changes.

sudo	systemctl	restart	dnsmasq

At	this	point,	you've	now	finished	the	configuration	of	the	local	DNS	Server	via	Dnsmasq	on	the	Debian	system.	You've
also	configured	the	local	domain	name	and	subdomains,	enabled	the	DNS	cache,	and	enabled	the	DHCP	server	via
Dnsmasq.

In	the	next	steps,	you'll	verify	your	Dnsmasq	server	installation	and	configuration.

Verifying	Dnsmasq	Installation
In	this	step,	you'll	verify	the	Dnsmasq	installation	by	checking	the	Dnsmasq	service	and	LISTEN	port	on	your	system.
Then,	you'll	verify	the	local	domain	name	and	sub-domains	that	you've	configured	via	the	'/etc/hosts'	file.

Run	the	below	command	to	ensure	that	the	Dnsmasq	service	is	running	on	port	53.	Then,	verify	the	status	of	the
Dnsmasq	service	via	the	systemctl	command	utility.

ss	-tulpn	|	grep	53
sudo	systemctl	status	dnsmasq

You'll	receive	the	output	similar	to	this	-	The	Dnsmasq	service	is	running	on	the	default	port	53	and	it's	enabled	and	will
be	run	automatically	upon	the	bootup.

Next,	you'll	verify	the	domain	name	and	sub-domains	that	you've	configured	on	the	Dnsmasq	via	the	'/etc/hosts'	file.	But
before	that,	run	the	below	apt	command	to	install	the	'dnsutils'	package	to	your	system.	The	'dnsutils'	package	provides
command	line	tools	for	testing	DNS	Server	configuration.

sudo	apt	install	dnsutils

Input	y	when	prompted	and	press	ENTER	to	proceed	to	the	installation.

After	the	'dnsutils'	is	installed,	run	the	following	dig	command	to	verify	the	domain	name	and	sub-domains	that	you've
configured.

Verify	the	Dnsmasq	main	domain	'hwdomain.io',	which	is	pointed	to	the	Dnsmasq	server	IP	address	'192.168.5.20'.

dig	hwdomain.io

Verify	sub-domains	that	you've	defined	via	the	'/etc/hosts'	file	via	the	dig	command	below.

dig	app1.hwdomain.io	+short
dig	db1.hwdomain.io	+short
dig	files.hwdomain.io	+short

The	sub-domain	'app1.hwdomain.io	is	pointed	to	the	IP	address	'192.168.5.10',	the	sub-domain	'db1.hwdomain.io'
is	pointed	to	the	IP	address	'192.168.5.25',	and	lastly	'files.hwdomain.io'	is	pointed	to	the	IP	address	'192.168.5.50'.

Below	is	the	similar	output	you'll	receive.

Now,	you've	configured	and	tested	the	Dnsmasq	installation	as	the	local	DNS	Server	on	a	Debian	server.	In	the	next
steps,	you'll	set	up	and	secure	the	Dnsmasq	using	the	UFW	firewall.

Setting	up	UFW	Firewall
Now	you'll	set	up	the	firewall	on	your	local	DNS	Server.	You'll	secure	the	Dnsmasq	installation	by	limiting	access	to	the
DNS	Server	via	the	UFW	firewall.

Run	the	below	apt	command	to	install	the	UFW	firewall	on	your	Debian	system.

sudo	apt	install	ufw	-y

After	installing	UFW,	run	the	below	command	to	add	the	OpenSSH	service	and	the	DNS	port	53	to	the	UFW	firewall.
In	this	example,	you'll	specify	the	source	of	the	network	that	is	allowed	to	access	the	Dnsmasq	server,	which	is	the	local
network	with	IP	addresses	192.168.5.0/24'.

Be	sure	to	change	the	local	network	IP	addresses	with	your	internal	network	subnet.

sudo	ufw	allow	OpenSSH
sudo	ufw	allow	from	192.168.5.0/24	to	any	port	53	proto	udp

Next,	run	the	below	command	to	start	and	enable	the	UFW	firewall.

sudo	ufw	enable

When	asked	for	the	configuration,	input	y	to	confirm	and	press	ENTER	to	proceed.	And	the	UFW	firewall	should	now	be
running	and	enabled	and	will	start	automatically	upon	the	bootup.

Lastly,	run	the	below	command	to	verify	the	status	of	the	UFW	firewall.	You	should	see	the	UFW	firewall	is	'active'	and
the	OpenSSH	service	and	the	DNS	port	53	added	to	the	firewall.

sudo	ufw	status

With	the	UFW	firewall	configured,	you	can	now	add	clients	to	connect	to	your	local	DNS	Server.

Setting	up	Client
In	this	step,	you'll	set	up	the	client	machine	with	Debian-based	distribution	and	the	hostname	'client'.	You'll	add	the
local	DNS	Server	Dnsmasq	to	the	client	machine.

Run	the	below	command	to	remove	the	link	of	the	DNS	resolver	configuration	file	'/etc/resolv.conf'.	Then,	create	a	new
resolver	configuration	'/etc/resolv.conf'	using	the	nano	editor	command	below.

sudo	unlink	/etc/resolv.conf
sudo	nano	/etc/resolv.conf

Input	the	following	line	to	the	file.	Be	sure	to	change	the	IP	address	with	your	Dnsmasq	server	IP	address.

nameserver	192.168.5.20

Save	the	file	and	exit	the	editor	when	you're	finished.

Next,	run	the	below	command	to	install	the	'dnsutils'	package	to	the	client	machine.

sudo	apt	install	dnsutils

Now	run	the	dig	command	below	to	verify	the	domain	name	'hwdomain.io',	which	will	be	pointed	to	the	Dnsmasq	server
IP	address.

dig	hwdomain.io

Below	is	the	output	you	will	receive.

For	sub-domains,	run	the	dig	command	below.	Each	sub-domain	will	be	pointed	to	the	IP	address	defined	in	the
'/etc/hosts'	file	on	the	Dnsmasq	server.

dig	app1.hwdomain.io	+short
dig	db1.hwdomain.io	+short
dig	files.hwdomain.io	+short

Below	is	the	similar	output	you'll	receive	on	the	client	machine.

Next,	you'll	also	need	to	ensure	that	you	can	access	the	public	domain	name	via	the	Dnsmasq	local	DNS	Server.	You	can
verify	this	by	checking	the	public	domain	name	such	as	'github.com'.

dig	github.com

You'll	receive	the	output	similar	to	this	screenshot	-	At	the	bottom	of	the	output,	you	should	see	that	your	request	is
answered	by	the	Dnsmasq	local	DNS	Server	that	runs	on	'192.168.5.20'	with	the	default	port	'53'.	With	this	in	mind,
you've	successfully	connected	to	the	public	domain	name	via	the	Dnsmasq	local	DNS	Server.

Lastly,	you	will	verify	the	DNS	cache	via	the	'drill'	and	'dig'	commands.	The	'drill'	command	is	part	of	the	'ldnsutils'
package,	so	run	the	below	apt	command	to	install	it.

sudo	apt	install	ldnsutils

After	installing	the	ldnsutils,	run	the	below	drill	command	to	verify	the	DNS	cache	that	you've	configured	on	the
Dnsmasq	server.

drill	duckduckgo.com	|	grep	"Query	time"
drill	duckduckgo.com	|	grep	"Query	time"

You'll	receive	the	output	like	the	following	screenshot	-	at	the	first	time	you	make	the	request,	the	'Query	time'	is	60ms.

But	the	second	time	you	request	the	same	domain,	the	query	time	is	reduced	to	1	ms,	which	is	the	DNS	request	is
cached	on	the	local	DNS	Server	Dnsmasq.

You	can	also	verify	the	DNS	cache	via	the	dig	command	with	the	option	'+stats'.

dig	+noall	+stats	duckduckgo.com
dig	+noall	+stats	duckduckgo.com

You've	now	finished	the	client	machine	configuration	and	verified	that	the	Dnsmas	local	DNS	Server	is	fully	working,
from	the	local	domain	name	and	sub-domains	that	you've	defined	via	the	'/etc/hosts'	file,	to	the	DNS	cache	that	you've
enabled	on	Dnsmasq.

Conclusion
In	this	tutorial,	you	have	created	your	own	local	DNS	Server	with	Dnsmasq.	You've	set	up	your	own	local	DNS	Server
for	your	local	environment	with	the	Dnmasq	on	a	Debian	12	server.	Also,	this	included	the	configuration	of	Dnsmasq
with	local	domain	names	and	sub-domains,	enabled	the	DNS	cache	to	get	faster	recurring	DNS	responses,	and	enabled
the	DHCP	Server	via	the	Dnsmasq.

Lastly,	you've	also	added	and	configured	the	client	machine	to	use	the	local	DNS	Server	that	you've	created.	Within
this,	you've	also	learned	how	to	troubleshoot	DNS	Server	with	the	dig	command	and	how	to	set	up	a	DNS	resolver	on	a
Linux	system.

